Tuesday, 20 November 2012

Identifying Top News using Crowdsourcing

The influential Text REtrieval Conference (TREC) retrieval conference has always relied upon specialist assessors or occasionally participating groups to create relevance judgements for the tracks that it runs. Recently however, crowdsourcing has been championed as a cheap, fast and effective alternative to traditional TREC-like assessments. In 2010, TREC tracks experimented with crowdsourcing for the very first time. In this paper, we report our successful experience in creating relevance assessments for the TREC Blog track 2010 top news stories task using crowdsourcing. In particular, we crowdsourced both real-time newsworthiness assessments for news stories as well as traditional relevance assessments for blog posts. We conclude that crowdsourcing not only appears to be a feasible, but also cheap and fast means to generate relevance assessments. Furthermore, we detail our experiences running the crowdsourced evaluation of the TREC Blog track, discuss the lessons learned, and provide best practices.

Richard McCreadie, Craig Macdonald and Iadh Ounis.
Identifying Top News using Crowdsourcing.
Information Retrieval Journal, 2012

Springer Link
Bibtex


0 comments:

Post a Comment

newer post older post Home