The automatic summarization of long-running events from news steams is a challenging problem. A long-running event can contain hundreds of unique ‘nuggets’ of information to summarize, spread-out over its lifetime. Meanwhile, informatio reported about it can rapidly become outdated and is often highly redundant. Incremental update summarization (IUS) aims to select sentences from news streams to issue as updates to the user, summarising that event over time. The updates issued should cover all of the key nuggets concisely and before the information contained in those nuggets becomes outdated. Prior summarization approaches when applied to IUS can fail, since they define a fixed summary length that cannot effectively account for the different magnitudes and varying rate of development of such events. In this paper, we propose a novel IUS approach that adaptively alters the volume of content issued as updates over time with respect to the prevalence and novelty of discussions about the event. It incorporates existing state-of-the art summarization techniques to rank candidate sentences, followed by a supervised regression model that balances novelty, nugget coverage and timeliness when selecting sentences from the top ranks. We empirically evaluate our approach using the TREC 2013 Temporal Summarization dataset extended with additional assessments. Our results show that by adaptively adjusting the number of sentences to select over time, our approach can nearly double the performance of effective summarization baselines.
Monday, 29 September 2014
Tuesday, 9 September 2014
A Study of Personalised Medical Literature Search
Medical search engines are used everyday by both medical practitioners and the public to find the latest medical literature and guidance regarding conditions and treatments. Importantly, the information needs that drive medical search can vary between users for the same query, as clinicians search for content specific to their own area of expertise, while the public search about topics of interest to them. However, prior research into personalised search has so far focused on the Web search domain, and it is not clear whether personalised approaches will prove similarly effective in a medical environment. Hence, in this paper, we investigate to what extent personalisation can enhance medical search effectiveness. In particular, we first adapt three classical approaches for the task of personalisation in the medical domain, which leverage the user’s clicks, clicks by similar users and explicit/implicit user profiles, respectively. Second, we perform a comparative user study with users from the TRIPDatabase.com medical article search engine to determine whether they outperform an effective baseline production system. Our results show that search result personalisation in the medical domain can be effective, with users stating a preference for personalised rankings for 68% of the queries assessed. Furthermore, we show that for the queries tested, users mainly preferred personalised rankings that promote recent content clicked by similar users, highlighting time as a key dimension of medical article search.
Comparing Algorithms for Microblog Summarisation
Event detection and tracking using social media and user-generated content has received a lot of attention from the research community in recent years, since such sources can purportedly provide up-to-date information about events as they evolve, e.g. earthquakes. Concisely reporting (summarising) events for users/emergency services using information obtained from social media sources like Twitter is not a solved problem. Current systems either directly apply, or build upon, classical summarisation approaches previously shown to be effective within the newswire domain. However, to-date, research into how well these approaches generalise from the newswire to the microblog domain is limited. Hence, in this paper, we compare the performance of eleven summarisation approaches using four microblog summarisation datasets, with the aim of determining which are the most effective and therefore should be used as baselines in future research. Our results indicate that the SumBasic algorithm and Centroid-based summarisation with redundancy reduction are the most effective approaches, across the four datasets and five automatic summarisation evaluation measures tested.
Friday, 29 August 2014
On Choosing an Effective Automatic Evaluation Metric for Microblog Summarisation
Popular microblogging services, such as Twitter, are engaging millions of users who constantly post and share information about news and current events each day, resulting in millions of messages discussing what is happening in the world. To help users obtain an overview of microblog content relating to topics and events that they are interested in, classical summarisation techniques from the newswire domain have been successfully applied and extended for use on microblogs. However, much of the current literature on microblog summarisation assumes that the summarisation evaluation measures that have been shown to be e ffective on newswire, are still appropriate for evaluating microblog summarisation. Hence, in this paper, we aim to determine whether the traditional automatic newswire summarisation evaluation metrics generalise to the task of microblog summarisation. In particular, using three microblog summarisation datasets, we determine a ranking of summarisation systems under three automatic summarisation evaluation metrics from the literature. We then compare and contrast this ranking of systems produced under each metric to system rankings produced through a qualitative user evaluation, with the aim of determining which metric best simulates human summarisation preferences. Our results indicate that, for the automatic evaluation metrics we investigate, they do not always concur with each other. Further, we find that Fraction of Topic Words better agrees with what users tell us about the quality and e ectiveness of microblog summaries than the ROUGE-1 measure that is most commonly reported in the literature.
Stuart Mackie, Richard McCreadie, Craig Macdonald and Iadh Ounis.
On Choosing an Effective Automatic Evaluation Metric for Microblog Summarisation
In Proceedings of IIIX 2014.
BIBTEX
Monday, 25 August 2014
Real-Time Detection, Tracking, and Monitoring of Automatically Discovered Events in Social Media
We introduce ReDites, a system for realtime event detection, tracking, monitoring and visualisation. It is designed to assist Information Analysts in understanding and exploring complex events as they unfold in the world. Events are automatically detected from the Twitter stream. Then those that are categorised as being security-relevant are tracked, geolocated, summarised and visualised for the end-user. Furthermore, the system tracks changes in emotions over events, signalling possible flashpoints or abatement. We demonstrate the capabilities of ReDites using an extended use case from the September 2013 Westgate shooting incident. Through an evaluation of system latencies, we also show that enriched events are made available for users to explore within seconds of that event occurring.
Miles Osborne , Sean Moran, Richard McCreadie, Alexander Von Lunen, Martin Sykora, Elizabeth Cano, Neil Ireson, Craig Macdonald, Iadh Ounis, Yulan He, Tom Jackson, Fabio Ciravegn, Ann O’Brien
Real-Time Detection, Tracking, and Monitoring of Automatically
Discovered Events in Social Media
In Proceedings of ACL 2014.
PDF
BIBTEX
Miles Osborne , Sean Moran, Richard McCreadie, Alexander Von Lunen, Martin Sykora, Elizabeth Cano, Neil Ireson, Craig Macdonald, Iadh Ounis, Yulan He, Tom Jackson, Fabio Ciravegn, Ann O’Brien
Real-Time Detection, Tracking, and Monitoring of Automatically
Discovered Events in Social Media
In Proceedings of ACL 2014.
BIBTEX
Subscribe to:
Posts (Atom)